Optical fiber curing of a dental composite: a holographic, thermographic, and Raman study

Photonica 2023

<u>Evgenije Novta¹, Tijana Lainović¹, Dušan Grujić², Svetlana Savić-Šević², Elvira Toth³, Željka Cvejić³, Larisa Blažić^{1,4}, Dejan Pantelić²</u>

¹University of Novi Sad, Faculty of Medicine, School of Dental medicine, Novi Sad, Serbia ²University of Belgrade, Institute of Physics, Belgrade, Serbia ³University of Novi Sad, Faculty of Sciences, Department of Physics, Novi Sad, Serbia ⁴Dental Clinic of Vojvodina, Novi Sad, Serbia

e-mail: evgenije.novta@mf.uns.ac.rs

The main limitation of dental resin-based composites (RBC):

- Shrinkage during polymer chain formation
- Generating polymerization shrinkage stress (PSS) inside a confined environment such as a tooth cavity (Fig. I)

Fig. I Polymerization shrinkage stress

<u>Study goal:</u>

• To introduce a novel photo-activation protocol using optical fibers (Fig. 2) inserted into the RBC (Fig. 3), for reducing PSS and guiding light directly into deeper layers of the restoration

Fig. 2 Optical fiber

Fig. 3 Optical fibers inserted into the tooth cavity model filled with the RBC

Fig. 5 Real-time tooth model deformation. I = 20 s conventional LED irradiation; 2 = 10 s 1st step LED irradiation via optical fibers, 3 = 10 s 2nd step conventional LED irradiation

Experimental vs. conventional photo-activation:

- 34 % reduction of tooth model deformation (Fig. 5)
- 39 % lower RBC temperature change, leading to lower thermal shrinkage during the cooling process (Fig. 6)
- The time to reach the maximum exothermal temperature was prolonged, allowing polymer chains to re-arrange and accommodate the volume reduction by viscous flow

- <u>The proposed two-step experimental photo-activation:</u>
- I^{st} step: two optical fibers (ϕ 1.5 mm) connected with a commercial dental LED unit, were inserted into the filling to cure the RBC from within
- 2nd step: fibers were extracted, remaining voids filled with the RBC and final conventional curing was performed
- Control group: conventional photo-activation on a separate group of samples (n=15 models per curing protocol)

Fig. 4 L-lens, A-aperture, M-mirror, SM-spherical mirror, O-object, Ob-object beam, Rb-reference beam, CCD-charge-coupled device, IR cam-infrared camera

- Tooth model deformation as a secondary manifestation of PSS was measured in real-time using digital holographic interferometry
- Simultaneous monitoring of RBC temperature change was conducted with an infrared thermal camera

Fig. 6 Real-time RBC temperature change. I = 20 s conventional LED irradiation; 2 = 10 s 1st step LED irradiation via optical fibers, 3 = 10 s 2nd step conventional LED irradiation

- Significantly lower immediate DC contributed to the reduction of model deformation (Table I)
- After 24h, the DC increased in both groups of samples, but remained significantly lower for the ones cured using the experimental protocol

Photo- activation protocol	Radiant exposure (J/cm ²)	Tooth model deformation (µm)	Temperature change (°C)	Time to reach the maximum temperature (s)	Immediate DC (%)	24 h post- cure DC (%)
Conventional	20	13.4	10.7	7.5	41.4	46.3
Experimental (I st + 2 nd step)	14.5	8.8	6.5	8.2	33.5	38. I

 Table I. Photo-activation parameters and results

- The protocol can be easily implemented into dental clinical practice by coupling the fibers with standardized commercial light guides
- Measuring the irradiance of the selected light source is necessary to adequately determine the exposure time

• As a separate experiment - degree of monomer-to-polymer conversion

(DC) was measured immediately after curing and after 24h of dark storage,

using Raman spectroscopy

Insufficient radiant exposure (i.e. lower than suggested by the manufacturer)

compromises the DC and therefore material biocompatibility and